

Developmental and Epileptic Encephalopathies

Aetiology, clinical presentation, and comprehensive genetic testing for personalised targeted therapy

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of neurological disorders with developmental impairment due to both the underlying cause and exacerbation by frequent seizures and epileptiform abnormalities on EEG¹

Aetiology¹

Genetic

- Specific gene defects cause recognisable syndromes
- Multiple genetic variants may be associated with the same epilepsy syndrome

Non-genetic

Structural, metabolic, infectious, or immune factors

Combination of genetic and environmental factors

Epilepsy¹

Uncontrolled, frequent, or prolonged seizures

- Developmental impairment precedes seizure onset in some patients²

Developmental abnormalities¹

- Cognitive deterioration may progress even after complete seizure control²

- Autism spectrum disorder
- Behavioural disorders
- Psychosis
- Depression

Symptoms for the diagnosis of DEE^{3,4}

Frequent drug-resistant seizures

- Seizure types
 - Epileptic spasms
 - Tonic, atonic, focal, and generalised seizures
 - Atypical absences¹

Epileptiform activity on the EEG

- Abundant diffuse or multifocal epileptiform discharges
- Diffuse slowing of the background on EEG
- Distinct patterns
 - Hypsarrhythmia
 - Burst-suppression
 - Periods of attenuation and slow spike-waves

Developmental slowing or regression

- Cognitive and motor function decline
- Neurodevelopmental comorbidities³
 - Autism spectrum disorders
 - Movement and behavioural disorders or psychosis

Underlying aetiology contributing to developmental impairment

Diagnostic testing for DEEs in children with developmental delay and epilepsy⁵

Medical history of the patient and family

Physical examination

Neuroimaging/magnetic resonance imaging

Neurodevelopmental assessment

Genetic testing

EEG study

Metabolic assessment

DEEs are genetically and phenotypically heterogeneous, and accurate differential diagnosis of DEEs that is defining both epilepsy syndrome and aetiology can aid in selection of optimal treatment^{2,5,6}

Optimised seizure control can minimise contribution of epileptic activity to cognitive impairment

Patients with infantile epileptic spasms syndrome

Early control of spasms to improve developmental outcomes⁷

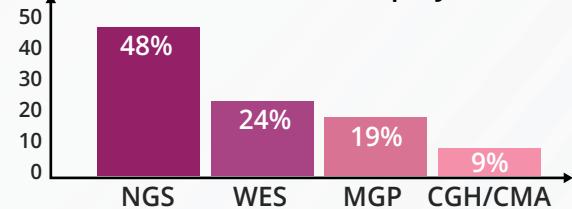
Genetic testing identifies specific pathogenic variants in DEEs

>900 genes causative for DEEs⁴

Among DEE patients¹:

De novo copy-number variants: 8%

Recessive pathogenic variants: 11–38%


30–50% of DEE caused by *de novo* pathogenic variants in single genes^{1,5}

Advanced genetic testing approaches⁵

- Comparative genomic hybridisation (CGH) arrays/chromosomal microarray analysis (CMA)
- Epilepsy multi-gene panel (MGP)
- Whole exome sequencing (WES)
- Whole-genome sequencing (WGS)
- Next-generation sequencing (NGS) for indels and complex structural variants
- Karyotyping for ring chromosomes⁸

Diagnostic yield of genetic testing varies based on the test employed⁹

Guidelines for comprehensive multi-gene testing in DEE diagnostics⁹

Evidence-based clinical recommendations for unexplained DEE

Genetic testing is strongly recommended as a first-tier test for all individuals with unexplained DEE without any age limitations

- Whole exome/genome sequencing
- MGP
 - 100–299 genes¹⁰
 - Copy-number analysis

Exome/genome sequencing is conditionally recommended over MGP

Genetic tests should be selected, ordered, and interpreted by a qualified healthcare provider in the setting of appropriate pre-test and post-test genetic counselling

NICE guidelines¹¹

• WGS for patients with DEE of unknown cause aged: <2 years	• 2–3 years (if clinically agreed by a specialist multidisciplinary team)
• WGS for individuals of any age with clinical features: Genetic epilepsy syndrome	• Additional signs, such as intellectual disability, autism, dysmorphism, congenital anomalies, or unexplained cognitive decline
• WGS for patients with early epilepsy onset: <5 years	• +/- Additional signs, such as intellectual disability, autism, dysmorphism, congenital anomalies, or unexplained cognitive decline

NICE: National Institute for Health and Care Excellence

Including genetic counsellors in neurology practices and/or referral to genetics specialists will support providers in implementing these recommendations⁷

Benefits of integrating genetic testing⁵

Genetic testing helps identify the cause in 30–50% of DEE cases⁵

- Improves understanding of DEE pathophysiology⁵
 - Identify the impact of previously unknown variants

- Direct towards appropriate resources⁶
 - Refer to gene-specific clinical trials

- Helps with prognosis and counselling on:
 - Risk of recurrence
 - Developmental outcomes
 - Risk of sudden unexpected death in epilepsy
 - Identifies at-risk family members
 - Family/pregnancy planning and prenatal genetic testing

- Helps in the development of personalised therapies^{5,9}
 - Inform antiseizure medication selection
 - Initiation of ketogenic diet
 - Alter plans for epilepsy surgery

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD)

CDD is a DEE caused by dysfunctional kinase activity of the CDKL5 protein^{2,12}

Annual global incidence of CDD²
1 per 40,000 to 50,000

Females are predominantly affected¹²
4:1 (female:male)

CDD is typically caused by a *de novo* pathogenic variant, with a single occurrence in a family¹²

Disease severity of X-linked CDD depends on¹²:

- Type and position of the *CDKL5* pathogenic variant
- Pattern of X chromosome inactivation in females
- Presence of postzygotic mosaicism in males or females

Clinical presentation of CDD

Distinctive seizure types that vary over time^{2,12}

Infancy

Epileptic spasms
(50% without hypsarrhythmia)

- No significant epileptiform abnormalities in EEG in early infancy but may be seen in late infancy

Later

- Multiple-phase seizures²
 - Hypermotor-tonic-spasm sequence

- Other seizure types:
Tonic, focal, myoclonic, and generalised tonic-clonic seizures

- Long periods without seizures in the first two years or more²
 - Frequent and multifocal epileptiform discharges

Developmental challenges¹²

Cortico visual impairment

Tone abnormalities

Sleep disturbances

Movement abnormalities

Gastrointestinal problems

Respiratory and behavioural problems

Treatment options^{12,13}

- Level 4 epilepsy center with expertise in management of DEE or a Center of Excellence is needed
- Multidisciplinary supportive care
- Annual assessments recommended

Targeting the *CDKL5* gene for personalised treatment of CDD

CDKL5 protein is the predominant isoform in the central nervous system, and its kinase activity is critical for normal brain development²

CDKL5 pathogenic variants are typically loss-of-function variants

Targeted gene therapies are promising for improving outcomes in children resistant to existing treatments for DEE and who have a poor prognosis⁵

Potential of targeted therapies for improving patient outcomes

Genetic testing enables personalised therapy according to the patient's unique genetic profile⁵

Genetic epilepsies that benefit from precision therapy include^{5,12}:

<i>KCNQ2</i>	Carbamazepine (FDA approved ¹⁴), phenytoin (FDA approved ¹⁵)
<i>CDKL5</i>	Ganaxolone (approved in the United States, European Union, United Kingdom ¹⁶ and China ¹⁷), fenfluramine (not approved), and cannabidiol (not approved)
<i>PCDH19</i>	Clobazam (not specifically approved by FDA for <i>PCDH19</i>)
mTORopathies	Mammalian target of rapamycin inhibitors (everolimus ¹⁸ ; approved in United States and European Union ¹⁹)
<i>SCN1A</i> loss-of-function variants	<ul style="list-style-type: none">• Cannabidiol, fenfluramine, and stiripentol for Dravet syndrome (approved in the United States, European Union, United Kingdom²⁰, and Japan²¹)• Avoid sodium channel blockers that worsen seizures
<i>KCNQ2</i> , <i>SCN2A</i> , and <i>SCN8A</i> gain-of-function variants	Ion sodium channel blockers

Key messages

- DEEs are complex conditions, and efforts should be made to reach a precise diagnosis as early as possible, permitting the identification of the most effective treatment
- Comprehensive early genetic testing is recommended for all individuals with unexplained epilepsy without any age limitations, appropriately supported by genetic counselling
- Improved understanding of the patient's unique genetic profile may enable personalised, targeted therapy and potentially pave the way for precision gene therapy

References:

- Guerrini, R., Conti, V., Mantegazza, M., Balestrini, S., Galanopoulou, A. S., & Benfenati, F. (2022). Developmental and epileptic encephalopathies: From genetic heterogeneity to phenotypic continuum. *Physiological Reviews*, 103(1), 433–513.
- Specchio, N., & Curatolo, P. (2021). Developmental and epileptic encephalopathies: What we do and do not know. *Brain*, 144(1), 32–43.
- Coppola, A. and Taylor, J. (2024). Understanding developmental and epileptic encephalopathies. *EMJ Neurology*, 12(Suppl 3), 2–7.
- Scheffer, I. E., French, J., Valente, K. D., Auvin, S., Cross, J. H., & Specchio, N. (2025). Operational definition of developmental and epileptic encephalopathies to underpin the design of therapeutic trials. *Epilepsia*, 66(4), 1014–1023.
- Chang, Y., Hong, S., Lin, W., Lin, C., Lin, S., Tsai, F., & Chou, I. (2023). Genetic testing in children with developmental and epileptic encephalopathies: A review of advances in epilepsy genomics. *Children*, 10(3), 556.
- Melendez-Zaidi, A., Angione, K., Williams, J., Kellogg, M., Goldman, A., Chavda, D., & Das, R. (2025). Genetic testing in epilepsy: Practical considerations for clinical use. American Epilepsy Society Practice Management Committee, <https://aeesnet.org/clinical-care/running-your-practice/genetic-testing-epilepsy-practical-considerations-for-clinical-use>
- Ge, W., Wan, L., Wang, Z., Fu, L., & Yang, G. (2025). Predictive model for initial response to first-line treatment in children with infantile epileptic spasms syndrome. *Italian Journal of Pediatrics*, 51(1), 118.
- Peron, A., Catusi, I., Recalcati, M. P., Calzari, L., Larizza, L., Vignoli, A., & Canevini, M. P. (2020). Ring chromosome 20 syndrome: genetics, clinical characteristics, and overlapping phenotypes. *Frontiers in Neurology*, 11, 613035.
- Smith, L., Malinowski, J., Ceulemans, S., Peek, K., Walton, N., Sheidley, B. R., & Lippa, N. (2022). Genetic testing and counseling for the unexplained epilepsies: An evidence-based practice guideline of the National Society of Genetic Counselors. *Journal of Genetic Counseling*, 32(2), 266–280.
- Leduc-Pessah, H., White-Brown, A., Hartley, T., Pohl, D., & Dymant, D. A. (2022). The benefit of multigene panel testing for the diagnosis and management of the genetic epilepsies. *Genes*, 13(5), 872.
- <https://www.nice.org.uk/guidance/ng21/chapter/1-Diagnosis-and-assessment-of-epilepsy#genetic-testing>. Accessed 19 Nov 2025.
- Benke, T. A., Demarest, S., Angione, K., Downs, J., Leonard, H., Saldaris, J., Marsh, E. D., Olson, H., & Haviland, I. (2024). *CDKL5* deficiency disorder. [Updated 2025 May 1]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. *GeneReviews* [Internet]. University of Washington, Seattle; 1993–2025.
- <https://www.epilepsy.com/what-is-epilepsy/syndromes/developmental-and-epileptic-encephalopathy>. Accessed 16 Dec 2025.
- Maan JS, Duong Tvh, Saadabadi A. Carbamazepine. [Updated 2023 Jul 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan.
- Gupta, M. & Tripp, J. Phenytoin. [Updated 2023 Jul 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan.
- <https://www.gov.uk/government/news/ganaxolone-approved-as-first-anti-seizure-medication-to-treat-patients-with-rare-epileptic-seizure-disorder>
- <https://ir.marinuspharma.com/news/news-details/2024/Marinus-Pharmaceuticals-Announces-Ganaxolone-Approved-in-China-as-First-Treatment-for-Seizures-Associated-with-CDKL5-Deficiency-Disorder/default.aspx>. Accessed 11 Nov 2025.
- Moloney, P. B., Cavalleri, G. L., & Delanty, N. (2021). Epilepsy in the mTORopathies: Opportunities for precision medicine. *Brain Communications*, 3(4), fcab222.
- Lechuga, L., & Franz, D. N. (2019). Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. *Expert Review of Neurotherapeutics*, 19(10), 913–925.
- Wirrell, E. C., Hood, V., Knupp, K. G., Meskis, M. A., Nababout, R., Scheffer, I. E., ... & Sullivan, J. (2022). International consensus on diagnosis and management of Dravet syndrome. *Epilepsia*, 63(7), 1761–1777.
- Guerrini, R., Chiron, C., Vandame, D., Linley, W., & Toward, T. (2024). Comparative efficacy and safety of stiripentol, cannabidiol and fenfluramine as first-line add-on therapies for seizures in Dravet syndrome: A network meta-analysis. *Epilepsia Open*, 9(2), 689–703.

This education resource has been supported by UCB. UCB has had no influence over the content or selection of the Editorial Panel

